

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Shri Vaishnav School of Management

Choice Based Credit System (CBCS) in Light of NEP-2020 **MBA+Ph.D. - III SEMESTER (2022-2024)**

MBAI301C ADVANCEDHUMAN VALUES AND PROFESSIONAL ETHICS

				TEA	CHIN	G & EVALU	ATIO	N SC	HE	ME	
COURSE			TH	EORY	7	PRACTIC	CAL				
CODE	CATEGORY	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
MBAI301C	AECC	Advanced Human Values and Professional Ethics	60	20	20	-	-	3	-	-	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical: C - Credit; AECC- Ability Enhancement Compulsory Course

Course Objective

The objective of the course is to disseminate the theory and practice of moral code of conduct and familiarize the students with the concepts of "right" and "good" in individual, social and professional context

Examination Scheme

The internal assessment of the students' performance will be done out of 40 Marks. The semester Examination will be worth 60 Marks. The question paper and semester exam will consist of two sections A and B. Section A will carry 36 Marks and consist of five questions, out of which student will be required to attempt any three questions. Section B will comprise of one or more cases / problems worth 24 marks.

Course Outcomes

- 1. Help the students to understand right conduct in life.
- 2. To equip students with understanding of the ethical philosophies, principles, models that directly and indirectly affect personal and professional life.

COURSE CONTENT

Unit I: Inculcating Values at Workplace

- 1. Values: Concept, Sources, Essence
- 2. Classification of Values.
- 3. Values in Indian Culture and Management: Four False Views, Value Tree
- 4. Eastern and Western Values; Values for Global Managers

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Chairperson Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

^{*}Teacher Assessment shall be based on following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Shri Vaishnav School of Management

Choice Based Credit System (CBCS) in Light of NEP-2020 MBA+Ph.D. - III SEMESTER (2022-2024)

	ī			TEA	CHINO	G & EVALU	ATIO	N SC	HEN	ME	
			ТН	EORY		PRACTIC	CAL				
COURSE CODE	CATEGORY	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
MBAI301C	AECC	Advanced Human Values and Professional Ethics	60	20	20	-	-	3	-	-	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical: C - Credit; AECC- Ability Enhancement Compulsory Course

Unit II: Professional Ethics

- 1. Ethics: Concept, Five P's of Ethical Power, Organisational Tools to Cultivate Ethics
- 2. Theories of Ethics: Teleological and Deontological
- 3. Benefits of Managing Ethics in an Organisation
- 4. Ethical Leadership

Unit III: Indian Ethos and Management Style

- 1. Indian Ethos and Workplace
- 2. Emerging Managerial Practices
- 3. Ethical Considerations in Decision Making and Indian Management Model
- 4. Core Strategies in Indian Wisdom and Ethical Constraints

Unit IV: Human Behavior - Indian Thoughts

- 1. Guna Theory
- 2. Sanskara Theory
- 3. Nishkama Karma
- 4. Yoga: Types, Gains; Stress and Yoga

Unit V: Spirituality and Corporate World

- 1. Spirituality: Concept, Paths to Spirituality
- 2. Instruments to achieve spirituality
- 3. Vedantic Approach to Spiritual and Ethical Development
- 4. Indian Spiritual Tradition.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth
Vishwavidyalaya, Indore

Chairperson
Faculty of Studies
Shri Vaishnav Vidyapeeth
Vishwavidyalaya, Indore

Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

^{*}Teacher Assessment shall be based on following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Shri Vaishnav School of Management

Choice Based Credit System (CBCS) in Light of NEP-2020 MBA+Ph.D. - III SEMESTER (2022-2024)

				TEA	CHING	G & EVALU	ATIO	N SC	HE	ME	
			TH	EORY		PRACTIC	CAL				
COURSE CODE	CATEGORY	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS
MBAI301C	AECC	Advanced Human Values and Professional Ethics	60	20	20	-	-	3	-	-	3

Suggested Readings

- 1. Kausahl, Shyam L. (2006). *Business Ethics Concepts, Crisis and Solutions*. New Delhi: Deep and Deep Publications Pvt. Limited
- 2. Murthy, C.S.V. (2012). *Business Ethics –Text and Cases*. Himalaya Publishing House: Mumbai
- 3. Chakraborty, S. K. (1999). Values and Ethics for Organizations. Oxford university press
- 4. D.Senthil Kumar and A. SenthilRajan (2008). *Business Ethics and Values*. Himalaya Publishing House: Mumbai

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth
Vishwavidyalaya, Indore

Chairperson
Faculty of Studies
Shri Vaishnav Vidyapeeth
Vishwavidyalaya, Indore

Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

^{*}Teacher Assessment shall be based on following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

(2021-2023)

			TEACHING &EVALUATION SCHEME										
WEST LAND AND S			Т	HEORY	7	PRACT	TCAL						
COURSE	ORY ORY	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Ť	P 0	CREDITS		
MTME114	DCC	Energy Systems and Management	60	20	20	0	0	2	1	0	3		

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:-

- To explain energy conversions systems and classification, energy management, renewable energy technologies etc.
- 2. To classify various trends of energy systems and management

Course Outcomes:-

- Students will be able to memories the energy conversion system and their classification, project
 management, renewable energy technologies and way of sustainable growth of energy.
- 2. Students will able to classify the various trends of energy systems and Management.
- 3. Students will be able to compare various energy systems each other.
- 4. Students will be able to solve various problems of energy systems and Management.
- * Students will be able to interpret advanced energy conversion systems, project management, energy policies and sustainable development.

Syllabus

Unit-I (8Hr)

Advanced Energy Conversion Systems: Classification of energy sources- Utilization, economics and growth rates- Fossil fuels, nuclear fuels and solar energy, Gas turbine and combined cycle analysis – Inter-cooling, reheating and regeneration-gas turbine cooling, Nuclear energy conversion – Chemical and nuclear equations – Nuclear reactions – Fission and fusion, Fuel rod design – Steam cycles for nuclear power plants – reactor heat removal – Coolant channel orificing – Core thermal design – Thermal shields.

Unit-II (8Hr)

Energy Modeling, Project Management: Interdependence of energy-economy-environment; Modeling concept, and application, Methodology of energy demand analysis; Methodology for energy forecasting; Sectoral energy demand forecasting; Interfuel substitution models; SIMA model, and I-O model for energy policy analysis; Simulation and forecasting of future energy

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Joint Registrar

(2021-2023)

			TEACHING & EVALUATION SCHEME											
	COURSE CATEG		Т	HEORY	7	PRACT	TCAL							
COURSE	ORY	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т Р	CREDITS				
MTME114	DCC	Energy Systems and Management	60	20	20	0	0	2	1	0	3			

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

demand consistent with macroeconomic parameters in India, Project Evaluation & Management: Financial analysis: Project cash flows, time value of money, life cycle approach & analysis, conception, definition, planning, feasibility and analysis; Project appraisal criteria; Risk analysis; Project planning matrix; Aims oriented project planning; Social cost benefit analysis.

(8Hr) Unit-III

Electrical Energy Systems And Management: Overall structure of electrical systems – Supply and demand side - Economic operation - Input-output curves - Load sharing - Industrial Distribution, Energy efficiency - Energy accounting, monitoring and control - Electricity audit instruments - Energy consumption models - Specific Energy Consumption - ECO assessment and Evaluation methods, Electric loads of air conditioning and refrigeration - Energy conservation - Power consumption in compressors - Energy conservation measures -Electrolytic process - Electric heating, Optimal operation.

(9Hr) Unit-IV

Renewable Energy Technologies: Power in wind - Availability - Types of wind turbines -Aerodynamics of Wind turbine, Bio fuel classification- Biomass production for Energy farming-Direct combustion for heat-Paralysis-Thermo chemical process Anaerobic digestion, Concept of energy and power from waves - Wave characteristics - period and wave velocities - Different wave energy conversion devices (Tapchan, oscillating water column type), OTEC Principle -Lambert's law of absorption - Open cycle and closed cycle, The Hydrogen economy -Advantages of hydrogen as an energy carrier.

(9Hr) Unit-V

Energy Policies For Sustainable Development: Supply focus approach and its limitations -Energy paradigms - DEFENDUS approach - End use orientation - Energy policies and development, Energy conservation schemes - Statutory requirements of energy audit -

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Joint Registrar

	COURSE CATEG COURSE NAME	TEA	ACHING (&EVALUAT	ION SC	HEME			
			THEORY		PRACTICAL				
COURSE	ORY	COURSE NAME	ND SEM niversity Exam wo Term Exam	Feachers sessment* ND SEM	Juiversity Exam Teachers		Т	P	CREDITS

60

20

20

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Energy Systems and

Management

Economic aspects of energy audit, Social cost benefit analysis - Computation of IRR and ERR -Advance models in energy planning - Dynamic programming models in integrated energy planning - Energy planning case studies.

Reference Books:

MTME114

DCC

- 1. IEEE Bronze Book: IEEE Standard 739-1984, "Practice for Energy Conservation and Cost Effective Planning in Industrial Facilities", IEEE Publications, 1996.
- 2. Nag PK, "Power plant Engineering", TMH, 2014
- 3. M. Munasinghe and P. Meier, "Energy Policy Analysis and Modeling,", Cambridge University Press, 1993.
- 4. G.N.Tiwari, M.K.Ghosal and Narosa, "Renewable Energy Resources Basic Principles and Applications" 2010
- 5. J. Goldemberg, T.B. Johansson, A.K.N. Reddy and R.H. Williams, "Energy for a Sustainable World", Wiley Eastern, 1990.

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore

Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Joint Registrar Shri Vaishnav Vidyapeeth

2

1 0 3

Vishwavidyalaya, Indore

		TEACHING &EVALUATION SCHEME										
Towns Towns	COURSE CATEG COURSE NAME		Т	HEORY	7	PRACT	ICAL					
Company of the Compan		COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS	
MTME124	DCC	Advanced Refrigeration and Air-Conditioning	60	20	20	0	0	2	1	0	3	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:-

The basic objective of the subject is to impart the(A) basics of refrigeration and Air conditioning equipment design and theory. Fundamentals of thermodynamics, refrigeration cycles Psychometry. Pre requisites are Refrigeration & Air Conditioning.(B) to introduced the fundamentals Properties of Moist air- Psychrometric relations Psychrometric chart, (C)To classify the Construction Details of Room Air Conditioner, Duct Design — Equal Friction Methods. (D) to introduced the fundamentals of fan, blower and compressor types and working.

Course Outcomes:-

After the completion of the course, students will be able to

- 1. Acquire an overview of various common refrigeration systems.
- 2. Estimate the refrigeration compressor types and design.
- 3. Able to understand simple Applied Psychrometry
- 4. Student able to understand the Fundamentals of thermodynamics, refrigeration cycles Psychometry. Pre requisites are Refrigeration & Air Conditioning
- 5. Develop the skills to analyze the multi pressure refrigeration systems.

Syllabus

Unit-l

(8Hr)

Refrigeration Cycles: Vapor compression cycle, multi-pressure systems, air refrigeration

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

		TEACHING &EVALUATION SCHEME										
	COURSE CATEG COURSE NAME		Т	HEORY	(PRACT	TICAL					
		END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS		
MTME124	DCC	Advanced Refrigeration and Air-Conditioning	60	20	20	0	0	2	1	0	3	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

cycles, systems equilibrium and cycling controls, classification of refrigerants, refrigerant properties, oil compatibility, blends, ecofriendly refrigerants. Vapor absorption systems, steam jet refrigeration, thermo electric refrigeration

(8Hr) Unit-II

Compressors and Expanders: Refrigeration compressors, compressors types and control, expansion devices, valves, receivers, oil trap, oil regenerators, driers and strainers, accumulator, functional aspects of the above components & accessories

(9Hr) Unit-III

Applied Psychrometry: psychrometry: properties of moist air- psychrometric relations psychrometric chart - psychrometric processes in air-conditioning equipment - bypass factor sensible heat factor, effective and grand sensible heat factors- selection of air- conditioning apparatus for cooling and dehumidification-high latent cooling load applications- all outdoor air application.

(8Hr) Unit-IV

Design of air-conditioning systems: Moist air, psychrometric chart and processes, cooling load estimation, controls of temperature, humidity and airflow, flow through ducts, losses, duct design - equal friction methods. Indoor air quality, thermal insulation, water piping in chilled water systems, construction details of room air conditioner - window type, package type, split type central units - air distribution devices - air circuits - air supply system.

(9Hr) Unit-V

Fans, blowers and compressors: Turbo machines, performance characteristics, fan laws, dimensionless parameters, specific speed, centrifugal, axial, mixed flow, axial flow machines.

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Joint Registrar Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore

COURSE CATEG COURSE NAME		TEACHING &EVALUATION SCHEME										
		Т	HEORY	ć	PRACT	TCAL						
	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS			
MTME124	DCC	Advanced Refrigeration and Air-Conditioning	60	20	20	0	0	2	1	0	3	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Centrifugal blowers: characteristic curves, velocity triangles, losses and efficiency, flow through impellers, casing, diffusers, cross-flow fans. Axial flow fans: rotor design, airfoil theory, vortex theory, cascade effects, degree of reaction, surge and stall, stator and casing, mixed flow impellers

References Books

- 1. C P Arora, "Refrigeration and air conditioning", McGraw Hill, 2018.
- 2. Stocker, "Refrigeration and air conditioning", McGraw Hill, 2017.
- 3. Threlked J L, Prentice Hall, N. Y, "Thermal Environmental Engineering", 2015, 2019.
- 4. Ozisik, M.N., "Design of Heat exchangers, condensers and evaporators", John Wiley, New York, 1e, 1985.
- 5. Nicholas Cheremisioff, "Cooling tower", Ann Arbor Science pub., 1e, 1981.
- 6. Austin H. Church, "Centrifugal pumps and blowers", John Wiley and Sons, 1e, 1980.
- 7. Carrier, "Air conditioning systems design", McGraw-Hill, 1e, 1985.
- 8. C.P. Arora, "Refrigeration and Air conditioning", Tata McGraw-Hill Pub. Company, New Delhi, 4e, 2006.

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

			TEACHING &EVALUATION SCHEME										
COURSE CATE			Т	HEORY	PRACTICAL		TICAL		4				
CODE	COURSE NAME	END SEM	University	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS		
MTME102	DCC	Advanced Machine Design		60	20	20	30	20	2	0	2	3	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:-

The objective of the subject is to deal with failure analysis and advanced areas of design of machine elements based on reliability, fatigue, creep. Also deals with the fracture mechanics approach to design. Pre requisites are Material science, Machine Design I and Machine Design II.

Course Outcomes:-

- 1. Students will be able to understand Case studies of mechanical engineering design failures, theories of failure and will be able to analyze static strength failure.
- Student will be able to apply knowledge of mathematics, science and engineering to design Equipments and Elements, Design of shaft and gear under fatigue, design of rolling contact bearings including linear bearings.
- Student will be able to analyze various types of failures produced in Mechanical equipments and interpret data for Reliability and optimization.
- 4. Student will be able to Design for Dynamic Loading High cycle and low cycle fatigue, Fatigue strength, Design for Creep, Combined creep and fatigue failure prevention, Design for low temperature (Brittle failure). Design for corrosion, wear, hydrogen embrittlement, fretting fatigue and other combined modes of mechanical failure
- Student will be able to understand ethics and responsibility while designing Mechanical components under creep, Dynamic loading fatigue, fretting fatigue and other combined modes of mechanical failure

Syllabus

Unit-I (8Hr)

Introduction to Advanced Mechanical Engineering Design Review of materials and processes for machine elements. Case studies of mechanical engineering design failures. Review of static strength failure analysis – theories of failure.

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Joint Registrar

	COURSE CATE		TEACHING &EVALUATION SCHEME										
COLIDER			Т	HEORY	(PRACT							
CODE	GORY	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P 2	CREDITS		
MTME102	DCC	Advanced Machine Design	60	20	20	30	20	2	0	2	3		

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Unit-II

Reliability and Optimum based Design Introduction to optimum design, analysis of simple machine

Reliability and Optimum based Design Introduction to optimum design, analysis of simple machine members based on optimum design. Fundamentals of reliability, System concepts in Reliability engineering. Failure distributions, Statistical analysis of failure data, Weibull analysis, dimensioning

Unit-III (9Hr)

Design for Dynamic Loading High cycle and low cycle fatigue, Fatigue strength. Design of Mechanical Equipment Elements. Exercises of fatigue design of shafting and gears. Exercises of surface fatigue design of rolling contact bearings including linear bearings.

Unit-IV (9Hr)

Design for Creep Introduction to Design for creep. Combined creep and fatigue failure prevention. Design for low temperature (Brittle failure). Design for corrosion, wear, hydrogen embrittlement, fretting fatigue and other combined modes of mechanical failure

Unit-V (10Hr)

Fracture mechanics Introduction: Fracture mechanics approach to design, the energy criterion, the stress intensity approach, effect of material properties on fracture, dimensional analysis in fracture mechanics. Fundamental concepts: Stress concentration effect of flaws, the Grifith energy balance, the energy release rate, instability and the R curve, stress analysis of cracks, K as a failure criterion. Fracture toughness testing of metals

Note: Only Mechanical Engineer's Handbook, Data-books and certified notes are allowed in the examination hall.

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Joint Registrar

			TEACHING &EVALUATION SCHEME										
COURSE CATE		Т	HEORY	Ý	PRACTICAL								
CODE	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS			
MTME102	DCC	Advanced Machine Design	60	20	20	30	20	2	0	2	3		

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in

Class, given that no component shall exceed more than 10 marks.

References Books

- 1. Shingley J.E., "Mechanical Engineering Design, McGraw-Hill", 2017.
- 2. Dieter G.E., "Engineering Design, McGraw-Hill", 2008.
- 3. Spotts M.F., Shoup T.E., Hrnberger L.E., "Design of Machine Elements", Pearson Education, 2005.
- 4. Shariff A., "Design of Machine, Elements", Dhanpat Rai Publications (P), 2018.
- 5. Mubeen., "Machine Design", Khanna Publications (P), 2009.

List of Practical's:

- 1. Problem based on theories of failures.
- 2. Problem based on Reliability Criterion.
- 3. Problem based on Optimum Criterion.
- 4. Problem on Design of parts subjected to Fatigue Loading.
- 5. Problem on Design of parts subjected to Dynamic Loading
- 6. Problem on Design of parts subjected to Creep.
- 7. Problem on Design of shafts and gears subjected to fatigue loading.
- Problem on Design of rolling contact bearings including linear bearings subjected to surface fatigue.
- 9. Experimental analysis of fracture mechanism for different materials.
- 10. Experimental analysis of Creep mechanism for different materials.

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Joint Registrar

(2021-2023)

				Т	EACHI	NG &EVAI	LUATIO	HEME	ME		
COURCE	CATEC		Т	HEORY	7	PRACT	TICAL				
COURSE	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS	
MTME106	DCC	Stimulation Modeling Lab (FEA, FEM and CFD)	0	0	0	30	20	0	0	4	2

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

Course Objectives:-

- 1. To provide the mathematical foundations of the finite element formulation for engineering applications
- 2. To expose students to some of the recent trends and research areas in finite element analysis.
- 3. This course brings together the knowledge gained in fluid mechanics, thermodynamics, heat transfer and numerical methods in order to develop computational techniques for the engineering analysis of heat and fluid flow processes.
- 4. This course also intends to provide the students with sufficient background to understand the mathematical representation of the governing equations of fluid flow, discretization techniques, grid generation, transformation equations and to numerically solve the flow field problems.

Course Outcomes:-

- 1. Student are able to solve problems related to finite element formulation for engineering purpose.
- 2. Define the element properties such as shape function and stiffness matrix for the various elements.
- 3. Formulate element properties for 1D and 2D elements.
- 4. Develop skill to solve simple Heat Transfer problems using the steps of FEM Syllabus
- 5. Under stand the governing of fluid flow, heat transfer and numerical solution.

Syllabus

Unit-I

(6Hr)

Introduction to Finite Element Method & Finite Element Techniques :-

Chairperson
Board of Studies

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Chairperson Faculty of Studies

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

(2021-2023)

				T	EACHI	NG &EVAI	LUATIO	N SCI	HEME		
COURCE	CATEC		Т	HEORY	1	PRACT	TICAL		87		
COURSE	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS	
MTME106	DCC	Stimulation Modeling Lab (FEA, FEM and CFD)	0	0	0	30	20	0	0	4	2

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Basic Concept, Historical Background, Engineering applications, general Description, comparison with other methods. Module boundary value problem, finite element decentralization, element shapes, sizes and node locations, interpolation functions, derivation of element equations, connectivity, boundary conditions, FEM solutions, post processing, Compatibility and completeness requirements, convergence criteria, higher order and iso parametric elements, natural coordinates, Lagrange and Hermit Polynomials

Unit-II (6Hr)

Applications to Solid and Structural Mechanics & Heat Transfer Problems :-

External and internal equilibrium equations, one-dimensional stress-strain relations, plane stress and strain problems, axis symmetric and three dimensional stress strain problems, strain displacement relations, boundary conditions compatibility equations, analysis of trusses, frames and solid of revolution, computer programs.

Variational approach, Galerikn approach, one dimensional and two dimensional steady state problems for conduction, convection and radiation, transient problems.

Unit-III (5Hr)

Stimulation:-

Monte carlo simulation, generation of stochastic variates , continuous and discrete probability distributions , application of Monte carlo methods for production systems , computr simulation models , Marco dynamic model.

Unit-IV (6Hr)

Finite Element Methods:-

Introduction, Calculus of variation, Ritz method, weighted residual methods., Fundamental concepts of the FEM, discretization of the domain, one and two and three dimensional elements and interpolation functions, compatibility and completeness requirements. Assembly and

Chairperson Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Chairperson
Faculty of Studies
Shri Vaishnav Vidyapeeth
Vishwavidyalaya, Indore

Controller of
Examination
Shri Vaishnav Vidyapeeth
Vishwavidyalaya, Indore

(2021-2023)

				Т	EACHI	NG &EVAI	LUATIO	N SCI	HEME		
COVIDER	CLITTE		Т	HEORY	7	PRACT	TICAL				
COURSE	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS	
MTME106	DCC	Stimulation Modeling Lab (FEA, FEM and CFD)	0	0	0	30	20	0	0	4	2

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

boundry conditions, formulation of FEM solutions., application to simple boundry value problems, computer implementation.

Unit-V (6Hr)

Computation Fluid Dynamics

Mathematical modeling: Governing equations of fluid flow and heat transfer; Introduction to discretization methods: Finite difference and finite volume methods for heat transfer problems; Time stepping methods for unsteady problems; Solution techniques for system of algebraic equations; Grid generation techniques; Solution techniques for Navier-Stokes equation; Finite element method for heat transfer and fluid flow problems; Turbulence modeling.

References Books

- 1. Fagan, "Finite Element Analysis-Theory & P,ctice", (Longman Scientific & Technical),
- 2. David Hutton, "Fundamentals of Finite Element Analysis", TMH, 2005.
- 3. H.S. Govinda Rao, "Finite Element Method versus Classical Methods", New Age International Publishers, 2011.
- 4. J. N. Reddy, "An Introduction to Finite Element Analysis", (Tata McGraw- Hill Pub. Co.), 2005.
- Martin and Carey, "Introduction to Finite element analysis", Tata McGraw Hill, 2008.
- 6. Huebner John, "The finite element method for engineering",2000.
- 7. Ferziger, J. H. and Peric, M. "Computational Methods for Fluid Dynamics:, Third Edition, Springer-Verlag, Berlin., 2003.
- 8. Versteeg, H. K. and Malalasekara, W. "Introduction to Computational Fluid Dynamics: The Finite Volume Method", Second Edition (Indian Reprint) Pearson Education., 2008.

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Joint Registrar Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore

(2021-2023)

				T	EACHIN	NG &EVAI	LUATIO	N SCE	HEME		
			Т	HEORY	1	PRACT	TICAL	1/3			
COURSE	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	T	P	CREDITS	
MTME106	DCC	Stimulation Modeling Lab (FEA, FEM and CFD)	0	0	0	30	20	0	0	4	2

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

- 9. Anderson, D.A., Tannehill, J.C. and Pletcher, R.H. "Computational Fluid Mechanics and Heat Transfer", Taylor & Francis., 1997.
- 10. K. Muralidhar, T. Sundarajan, "Computational Fluid Flow and Heat Transfer", Narosa Publishing House, New Delhi, 1997.

List of Practical's:

- 1. Modeling and analysis of periodic and heat transfer over a bank of tubes
- 2. Modeling and analysis of external compressible flow over an aero foil blade
- 3. Analysis of unsteady compressible flow through a nozzle
- 4. Analysis of flow pattern inside Turbomachines applications
- 5. Analysis of air quality inside a passenger car
- 6. Analysis of varies nose body configuration
- 7. Quantitative description of flow phenomena using measurements
- 8. Quantitative prediction of flow phenomena using CFD software
- 9. Identify the forces which cause and influence the fluid motion.
- 10. Choose a suitable flow model (viewpoint) and reference frame.
- 11. Use a comprehensive model for combustion of fuel at atmospheric pressure and develop a computer program to estimate the heat released assuming a single step reaction.

Chairperson
Board of Studies

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Joint Registrar

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Shri Vaishnav Institute of Science and Technology Choice Based Credit System (CBCS) in Light of NEP-2020 M. Tech in Industrial Engineering (2021-2023)

				TI	EACHIN	G &EVAL	LUATIO	N SCI	HEME		
			Т	HEORY	7.	PRACT	ICAL '		100		
COURSE	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	L Т	P	CREDITS	
MTIE111	DSE	Ergonomic and Industrial Safety	60	20	20	0	0	2	1	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

Course Educational Objectives (CEOs):

To (A) Explain the psychology of human behavior as it relates to workplace safety, (B) Identify ergonomic hazards, (C) Recommend appropriate controls, and relate the human and workplace factors which contribute to ergonomic hazards.

Course Outcomes (COs):

After completion of this course the students are expected to be able to demonstrate following knowledge, skills and attitudes

- 1. Explain the psychology of human behavior as it relates to workplace safety.
- 2. Identify ergonomic hazards; recommend appropriate controls.
- 3. Relate the human and workplace factors which contribute to ergonomic hazards.

Syllabus

(8Hr) UNIT 1

Ergonomics: Definition, Application, Brief History, Effectiveness and Cost-Effectiveness of Ergonomics Human Factors and Ergonomics, Systems of the Human Body, Anatomy of Spine and Pelvis Related to Posture Biomechanics, Muscular System, Ergonomics and the Musculoskeletal System, Costs of Back Injuries.

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Chairnerson

Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Shri Vaishnav Institute of Science and Technology Choice Based Credit System (CBCS) in Light of NEP-2020 M.Tech in Industrial Engineering (2021-2023)

				TI	EACHIN	G &EVAI	JUATIO	N SCI	HEME		
			Т	HEORY	7	PRACT	ICAL '		13		
COURSE CODE	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	т	P	CREDITS	
MTIE111	DSE	Ergonomic and Industrial Safety	60	20	20	0	0	2	1	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

UNIT-2 (9Hr)

Muscular Work and Nervous Control of Movements, Types of Muscular Work, Muscular Fatigue, Types of Muscle Contractions, Measurement of Muscular Strength, Anthropometry: Definition, Terminology, Myth of the Average Human, Principles of Universal Design, Anthropometric Measurements

UNIT 3 (9Hr)

Design of Workplaces and Hand Tools, Work Design Analysis, Designing for Hand Use, Types of Injuries and Disorders. Work-Related Musculoskeletal Disorders, Types of Work-Related MSD's, Task-related Factors, Personal Risk Factors, Impact on Industry, Ergonomic Program for WMSD's.

UNIT 4 (8Hr)

Heavy Work and Evaluating Physical Workloads and Lifting, Heavy Work, Manual Material Handling & Lifting, Classification and Risks, NIOSH Lifting Guidelines, Job Demands and Workplace Stress, Mental Fatigue/Shift-work Fatigue.

UNIT 5 (9Hr)

Information Ergonomics: Controls, and Displays, Mental Workload Measurement, Primary and Secondary Task Performance, Controls and Displays (Types), Control Layout and Design, How

Chairperson Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Chairperson Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of
Examination
Shri Vaishnav Vidyapeeth
Vishwavidyalaya, Indore

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Shri Vaishnav Institute of Science and Technology Choice Based Credit System (CBCS) in Light of NEP-2020 M.Tech in Industrial Engineering (2021-2023)

				TI	EACHIN	G &EVAL	UATIO	N SCI	IEME		
			Т	HEORY		PRACT	ICAL		70		
COURSE	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment**	END SEM University Exam	Teachers Assessment*	L		Р	CREDITS	
MTIE111	DSE	Ergonomic and Industrial Safety	60	20	20	0	0	2	1	0	3

Legends: L-Lecture; T-Tutorial/Teacher Guided Student Activity; P-Practical; C-Credit;

to Implement An Ergonomic Program, Management and Employee Involvement, Setting Up the Ergonomics Program, Problem Identification, Hazard Prevention and Control, Training.

Text Books

- 1. Robert Bridger; "Introduction to Ergonomics; 2011.
- 2. Scott, P.A.; Charteris, J.; Bridger, R.S; "Industrial Safety and Health Management"; 2015
- Joel M. Haight; Jeffery C. Camplin; Chritopher A. Janicak; Anjan K. Majumder; Linda S. Rowley; Kathy; "Principles of Industrial Safety"; 2015.
- 4. Nicholas P. Cheremisinoff; "Practical Guide to Industrial Safety"; 2014.

Chairperson Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Chairperson Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of
Examination
Shri Vaishnav Vidyapeeth
Vishwavidyalaya, Indore

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

				TI	EACHIN	G &EVAL	UATIO	N SCI	IEME		
	COURSE NAME		Т	HEORY	1	PRACT	TCAL '		33		
COURSE		END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	LT	P	CREDITS	
MTIE231	DSE	Reliability Analysis and prediction	60	20	20	0	0	2	1	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

Course Educational Objectives (CEOs)

Topics covered include (A) reliability mathematics, organization and analysis of data, reliability modeling and system reliability evaluation techniques. (B) Environmental factors and stresses are taken into account in computing the reliability of the involved components. (C) The limitations of models, methods, procedures, algorithms and programmers are outlined. (D) The treatment of maintained systems is designed to aid the worker in analyzing systems with more realistic and practical assumptions. (E) Fault tree analysis is also extensively discussed, incorporating recent developments.

Course Outcomes (COs)

Having successfully completed the module, you should be able to demonstrate knowledge and understanding of the following:

- 1. Reliability, its model and evaluation techniques.
- 2. Factor affecting reliability.
- 3. Limitations.
- 4. Fault Tree Analysis.

Syllabus

Unit-I

Reliability Engineering: An overview. Historical development, Reliability: A birth-to-death problem. Reliability: An interdisciplinary effort. Reliability education and research, Problems of developing countries, Reliability prediction and analysis, Problems in prediction and analysis. Challenges for future. Scope of the book.

Reliability Mathematics. Classical set theory. Boolean algebra. Sample space. Definitions of

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

				TI	EACHIN	G &EVAL	UATIO	N SCI	HEME		
			Т	HEORY	r	PRACT	TCAL				
CODE	CATE GORY COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	Т	P	CREDITS	
MTIE231	DSE	Reliability Analysis and prediction	60	20	20	0	0	2	1	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

*Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

probability. Basic properties of probability. Independent events. Conditional probability. Multiplication theorem. Total probability theorem. Bayes' theorem. Random variables. Probability distributions. Cumulative distributions. Mathematical expectation. Variance. Covariance and correlation. Moments. Moment generating functions. Probability distributions. Joint probability distributions. Distributions of several random variables. Some useful limit theorems. Estimation theory. Laplace transform. Markov processes. Random number generation.

Unit-II

Reliability Data Analysis and Management. The reliability function. Mean time to failure. Variance. The bathtub curve. Linear hazard models. Other hazard models. Analysis of failure data. Probability graph papers. Illustrations. Hazard function plots. Selection of a distribution. Statistical estimation of failure data. Interval estimates. Reliability data management.

Unit - III

Reliability Prediction from Stress-Strength Models. Stresses due to internal and external environments. Physics of failures. Reliability from stress-strength distributions. Reliability from similar stress-strength distributions. Reliability from dissimilar stress-strength distributions. Graphical approach. Time dependent stress-strength models. Environmental factors. Environmental testing; Test specifications. Stress derating. Estimation of part failure rate.

System Reliability Modeling. System modeling. Assumptions for modeling. Two state modeling. Three-state models.

Chairperson Board of Studies

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Chairperson
Faculty of Studies

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

				TI	EACHIN	G &EVAL	UATIO	N SCI	HEME		
			Т	HEORY	,	PRACT	ICAL				
COURSE	COURSENAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	т	P	CREDITS	
MTIE231	DSE	Reliability Analysis and prediction	60	20	20	0	0	2	1	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

Unit - IV

Reliability Evaluation Techniques. Non path sets or cut sets approaches. Tie set and cut set approaches. Reliability evaluation of flow networks, Path sets/cut sets enumeration.

Maintainability Analysis Measures of system performance. State space approach. Network approach. Conditional probability approach. Three state systems. Preventive maintenance. Condition-based maintenance.

Unit-V

System Analysis Through Fault Trees. Important definitions. Event oriented analysis. Fault tree definitions and symbols. Structure function and coherence. Fault tree construction. Fault tree simplification. Fault tree evaluation. Importance measures of events. Measures of importance in multistate systems. Modularization in fault trees. Common cause/dependent failure analysis. Automatic synthesis of fault trees. Computer codes for fault tree analysis.

References:

- K.B. Misra, "Reliability Analysis and Prediction", Volume 1, 1st Edition; Elsevier Science' 2012
- 2. Naikan, "Reliability Engineering and Life Testing" PHI, 2016
- 3. Patrick D. T. O'Connor, "Practical Reliability Engineering" wiley, 2008

Chairperson Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Chairperson Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

Examination
Shri Vaishnav Vidyapeeth
Vishwavidyalaya, Indore

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

17	021	1 7	n	72
14	$\mathbf{U}\mathbf{A}\mathbf{J}$	-4	U.	43

				TI	EACHI	NG &EVAI	LUATIO	N SCI	HEME		
	G. TEC		Т	HEORY	7	PRACT	TICAL				
CODE	OURSE CATEG COURSE NAME ORY	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	T	P	CREDITS	
MTME134	DSE	Advanced Thermodynamics and Combustion Engineering	60	20	20	0	0	2	1	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks...

Course Educational Objectives:-

To make the student understand

- 1. The principle of entropy, and entropy generation in closed and open systems
- 2. The concepts of availability and irreversibility
- 3. Properties of gases and gas mixtures, and thermodynamic relations
- 4. Thermodynamics of reactive systems and chemical equilibrium

Course Outcomes:-

The student will be able to

- 1. Apply the principles of entropy and irreversibility to solve practical problems
- 2. Explain the equations of state for ideal and real gases and gas mixtures
- 3. Use thermodynamic relations to predict latent heats and other properties of substances
- 4. Explain combined power cycles
- Explain thermodynamic distribution function and partition function in classical thermodynamics design parameters like fuel-air mixtures and cycle analysis

SYLLABUS-

UNIT I - Entropy

(9Hr)

Entropy: Clausius theorem - the property of entropy, the inequality of Clausius, entropy change in an irreversible process, entropy principle, applications of entropy principle to the processes of transfer of heat through a finite temperature difference, and mixing of two fluids maximum work obtainable from a finite body and a thermal energy reservoir, entropy transfer with heat flow, entropy generation in a closed system, entropy generation in an open system.

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore

Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore

Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Joint Registrar

COURSE CODE	CATEG ORY	COURSE NAME	TEACHING &EVALUATION SCHEME								
			THEORY			PRACTICAL					
			END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	T	P	CREDITS
MTME134	DSE	Advanced Thermodynamics and Combustion Engineering	60	20	20	0	0	2	1	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks..

UNIT II- Availability & Pure Substances

(9Hr)

Available energy: Available energy referred to cycle, available energy from a finite energy source, maximum work in a reversible process, availability in a steady flow process, availability in non-flow process.

P-V-T Relationships for pure substances: P-v diagram for a pure substance, triple point line, critical point, saturated liquid and vapor lines, P-T diagram for a pure substance, T-s diagram for a pure substance, h-s diagram (Mollier diagram) for a pure substance, dryness fraction, problems using steam tables.

Properties of Gases: Equations of state – Vander Waal's equation, law of corresponding states, Beattie-Bridgeman equation, Redlich-Kwong equation.

Gas Mixtures: Dalton's law of partial pressures - enthalpy and entropy

UNIT III- (9Hr)

Thermodynamic Relations: Maxwell's equations –TdS equations – difference in heat capacities – ratio of heat capacities – Joule-Kelvin effect – Clausius-Clapeyron equation.

Power Cycles: Brayton cycle – comparison between Brayton cycle and Rankine cycle – effect of regeneration & reheat on Rankine cycle efficiency – Brayton-Rankine combined cycle, Carnot Cycle.

Statistical Thermodynamics-II: Maxwell-Boltzmann statistics and distribution, Fermi-Dirac statistics and distribution, Bose-Einstein statistics and distribution, phase space, Liouville equation, equilibrium constant by statistical thermodynamic approach

UNIT IV-

Engine types and their operation- engine design and operating parameters, Fuel-air mixtures and cycle analysis- thermo chemistry of fuel-air mixtures, properties of working fluids, fuel-air cycle analysis, and availability analysis of engine processes.

Chairperson

Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Chairperson

Faculty of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

COURSE CODE	CATEG ORY	COURSE NAME	TEACHING &EVALUATION SCHEME								
			THEORY			PRACTICAL					
			END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	L	T	P	CREDITS
MTME134	DSE	Advanced Thermodynamics and Combustion Engineering	60	20	20	0	0	2	1	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; *Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks..

Gas Exchange Processes - Volumetric efficiency, flow through valves, residual gas fraction, exhaust gas flow rate and temperature variation, supercharging and turbo charging.

Charge motion- Mean velocity and turbulence characteristics, swirl, squish, pre-chamber engine flows, crevice flows and blowby.

Fuel metering and manifold phenomenon-SI engine mixture requirements, carburetors, fuel injection systems, flow past throttle plate, and flow in intake manifolds.

UNIT V- (8Hr)

SI Engine combustion- Thermodynamic analysis of SI engine combustion, flame structure and speed, cyclic variations in combustion, and abnormal combustion.

Pollutant formation and control- Nature and extent of problem, nitrogen oxides, carbon monoxide, unburned hydrocarbon emissions, particulate emissions, exhaust gas treatment.

Modern trends in I.C. engines- lean burning engines-rotary engines, modification in I.C engines to suit Bio – fuels.

CI Engine combustion- Essential features, types of diesel combustion systems, analysis of cylinder pressure data, fuel spray behavior, ignition delay, and mixing-controlled combustion.

References Books:

- 1. Heinz Heisler, "Advanced Engine Technology", Trafalgar Square, 1997.
- 2. V. Ganesan, "Internal Combustion Engines", 2ndEdition, Tata McGraw Hill, 2002.
- M.L.Mathur and R.P. Sharma, "Internal Combustion Engines", Dhanpat Rai, 2008.Y.A. Cengel and M.A. Boles, "Thermodynamics – An Engineering Approach", 5th Edition in SI Units, Tata McGraw Hill Publishing Company Limited, New Delhi, 2006.
- C. Borganakke and R.E. Sonntag, "Fundamentals of Thermodynamics", 7th Edition, Wiley India, Delhi, 2012.

Chairperson

Board of Studies

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Chairperson

Faculty of Studies

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Controller of Examination

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Joint Registrar Shri Vaishnav Vidyapeeth